Means and Variances (Q 1.5)

1. What happens we subtract the means for each of the derived samples? Why?

2. And the variances? Why? What is a real world example?
Reviewing Distributions

<table>
<thead>
<tr>
<th></th>
<th>Z Distribution</th>
<th>t Distribution</th>
<th>χ^2 Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>When to use</td>
<td>Used when the true population variance (either of individuals or sample means) is known</td>
<td>Used when the true population variance is unknown and is estimated by a sample variance (must pay price for uncertainty)</td>
<td>1. Defined as the SS of standard normal variables (Z_i). 2. Since the Z variable is squared, χ^2 has only positive values</td>
</tr>
<tr>
<td>Associated Equations</td>
<td>$Z = \frac{Y_i - \mu}{\sigma}$</td>
<td>$Z = \frac{\bar{Y} - \mu}{\sigma_{\bar{Y}}}$</td>
<td></td>
</tr>
</tbody>
</table>
$t_{P,df} = \frac{Y_i - \mu}{s_n}$
$t_{P,df} = \frac{\bar{Y} - \mu}{s_{\bar{Y}}_n}$ |
| **Characteristics** | 1. $Z(Y)$ is the height of the curve at a given observed value Y
2. Location and shape of a normal probability density function determined by two parameters, μ and σ^2 | 1. Tends toward Z as sample size increases ($t \rightarrow Z$) as ($df \rightarrow \infty$)
2. Usually $df << \infty$; so the t distributions are usually flatter and more dispersed than a standard normal distribution
3. One or two tailed probabilities | 1. If only one Z distribution is involved in the sum, the χ^2 distribution is said to have 1 df
2. For each number of df, there is a χ^2 distribution
3. The two tails of the Z distribution are brought together in a single tail of χ^2, meaning $\chi^2_{1, \alpha} = Z^2_{\alpha/2}$ |
Example #1

From a normally distributed population of finches with mean weight (μ) = 17.2 g and variance (σ^2) = 36 g2, what is the probability of randomly selecting an individual finch weighing more than 22 g?

Probability of selecting an individual of a certain value at random

\[Z = \frac{Y_i - \mu}{\sigma} \]

A. $Z = \frac{Y_i - \mu}{\sigma}$

B. $Z = \frac{\bar{Y} - \mu}{\sigma_{\bar{Y}}}$

C. $t_{P, df} = \frac{Y_i - \mu}{S_n}$

D. $t_{P, df} = \frac{\bar{Y} - \mu}{S_{\bar{Y}_n}}$
Example #2

From a population of finches with mean weight \(\mu = 17.2 \text{ g} \) and sample variance \(s^2 = 36 \text{ g}^2 \), what is the probability of of randomly selecting an individual finch weighing more than 22 g from a sample of 20 finches?

Probability of selecting an individual of a certain value at random from a sample with an unknown population variance

\[
\begin{align*}
A. & \quad Z = \frac{Y_i - \mu}{\sigma} \\
B. & \quad Z = \frac{\bar{Y} - \mu}{\sigma_{\bar{Y}}} \\
C. & \quad t_{P,df} = \frac{Y_i - \mu}{s_n} \\
D. & \quad t_{P,df} = \frac{\bar{Y} - \mu}{s_{\bar{Y}_n}}
\end{align*}
\]
From a population of finches with mean weight (μ) = 17.2 g and sample variance (s^2) = 36 g2, what is the probability of a sample of 20 finches with an average weight of more than 22 g?

Probability of selecting a sample of a certain value at random with an unknown population variance

Example #3

$$Z = \frac{Y_i - \mu}{\sigma} \quad \text{B.} \quad Z = \frac{\bar{Y} - \mu}{\sigma_{\bar{Y}}} \quad \text{C.} \quad t_{P,df} = \frac{Y_i - \mu}{s_n} \quad \text{D.} \quad t_{P,df} = \frac{\bar{Y} - \mu}{s_{\bar{Y}_n}}$$
Example #4

From a normally distributed population of finches with mean weight (μ) = 17.2 g and variance (σ^2) = 36 g2, what is the probability of randomly selecting a sample of 20 finches with an average weight of more than 22 g?

Probability of selecting a sample of a certain value at random

A. $Z = \frac{Y_i - \mu}{\sigma}$
B. $Z = \frac{\bar{Y} - \mu}{\sigma_{\bar{Y}}}$

C. $t_{P,df} = \frac{Y_i - \mu}{S_n}$
D. $t_{P,df} = \frac{\bar{Y} - \mu}{S_{\bar{Y}}n}$
Example #5

The Acme Battery Company has developed a new cell phone battery. On average, the battery lasts 60 minutes on a single charge. The standard deviation is 4 minutes. Suppose the manufacturing department runs a quality control test. They randomly select 7 batteries. The standard deviation of the selected batteries is 6 minutes. What is the probability that the standard deviation in the new test would be greater than 6 minutes?

\[X^2 = \frac{(n - 1) * s^2}{\sigma^2} \]

\[X^2 = \frac{(7 - 1) * 6^2}{4^2} = 13.5 \]

To find the cumulative probability that a chi-square statistic falls between 0 and 13.5

The cumulative probability: 0.96

Probability that a SD would be less than or equal to 6 minutes is 0.96

The probability that the standard deviation would be greater than 6 minutes is 1 - 0.96 or .04.
<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>121</td>
<td>121</td>
<td>116</td>
<td>107</td>
<td>104</td>
<td>110</td>
<td>119</td>
<td>116</td>
<td>108</td>
<td>92</td>
<td>101</td>
<td>121</td>
</tr>
<tr>
<td>B2</td>
<td>123</td>
<td>131</td>
<td>125</td>
<td>113</td>
<td>138</td>
<td>119</td>
<td>118</td>
<td>116</td>
<td>118</td>
<td>113</td>
<td>107</td>
<td>123</td>
</tr>
<tr>
<td>B3</td>
<td>107</td>
<td>160</td>
<td>160</td>
<td>129</td>
<td>114</td>
<td>107</td>
<td>119</td>
<td>114</td>
<td>107</td>
<td>131</td>
<td>103</td>
<td>86</td>
</tr>
<tr>
<td>B4</td>
<td>123</td>
<td>119</td>
<td>127</td>
<td>129</td>
<td>131</td>
<td>100</td>
<td>121</td>
<td>99</td>
<td>111</td>
<td>105</td>
<td>92</td>
<td>108</td>
</tr>
<tr>
<td>B1</td>
<td>123</td>
<td>118</td>
<td>138</td>
<td>151</td>
<td>104</td>
<td>127</td>
<td>108</td>
<td>118</td>
<td>108</td>
<td>136</td>
<td>116</td>
<td>114</td>
</tr>
<tr>
<td>B2</td>
<td>129</td>
<td>131</td>
<td>140</td>
<td>157</td>
<td>127</td>
<td>133</td>
<td>119</td>
<td>121</td>
<td>99</td>
<td>123</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>B3</td>
<td>131</td>
<td>129</td>
<td>131</td>
<td>136</td>
<td>143</td>
<td>121</td>
<td>131</td>
<td>131</td>
<td>108</td>
<td>131</td>
<td>127</td>
<td>110</td>
</tr>
<tr>
<td>B4</td>
<td>131</td>
<td>131</td>
<td>129</td>
<td>151</td>
<td>131</td>
<td>118</td>
<td>118</td>
<td>114</td>
<td>119</td>
<td>125</td>
<td>127</td>
<td>90</td>
</tr>
</tbody>
</table>