Review Sessions for MT 1

- **FRI (4/17):** Kleiber Hall, 5 - 7 p.m.
- **Mon (4/20):** Kleiber Hall, 5 - 7 p.m.

- See *ESSENTIALS for MIDTERM 1*
- Problem sets and Midterms of 2008 and 2007

posted on the “real” 103 website (My UCDavis)
http://www.plantsciences.ucdavis.edu/bis103
MIDTERM 1

Next Tuesday (4/21 from 1:40 – 3:00 p.m.)

Seating Assignments (last name initial)

(I-Z) ➔ 198 Young Hall

Bring a calculator supporting log functions!
Lecture 6

- Degradation of other carbohydrates
- Pyruvate Dehydrogenase Complex (PDH)

Co-Factors, Reactions, Enzymes
The “Powertrain” of Human Metabolism (Overview)

CARBOHYDRATES
- Glucose
- Glucose-6-P
- Oxaloacetate
- Ribose-5-P
- NADPH
- NADH

GLYCOLYSIS

PROTEINS
- Amino acids

LIPIDS
- Fatty acids
- Ketone bodies
- Cholesterol

ATP

NADH

O2

CO2

H2O

aerobic

anaerobic

Lactate
The "Powertrain" of Human Metabolism (Overview)

CARBOHYDRATES
- Sucrose
- Lactose
- Fructose
- Mannose
- Glycerol
- Galactose
- Starch

PROTEINS
- Amino acids
- Oxaloacetate

LIPIDS
- Fatty acids
- Acetyl-CoA
- NADH

GLYCOLYSIS
- Glycogen → Glucose-6-P → Pyruvate
- Lactate
- Ribose-5-P
- NADPH → NADH

Anaerobic
- Lactate

Aerobic
- Acetyl-CoA → CO₂ → H₂O → ATP

Additional Metabolites
- Ketone bodies
- Cholesterol
Hydrolysis of Sucrose and Lactose

\[
\text{Sucrose } + \text{ H}_2\text{O} \rightarrow \text{ Glu } + \text{ Fru}
\]

Enzyme (Hydrolase): Invertase (saliva, small intestines)
Lactose

\[\text{Lactose} + \text{H}_2\text{O} \rightarrow \text{Gal} + \text{Glu} \]

Enzyme (Hydrolase): Lactase (babies, weaning animals)

Lactose Intolerance

p. 34
Metabolism of Fructose, Mannose, and Glycerol

A. Fructose

\[
\text{Fructose} \xrightarrow{1} \text{F-6-P} \xrightarrow{14} \text{F-1-P} \xrightarrow{15} \text{Dihydroxyacetone-P (DHAP)} \xrightarrow{16} \text{GA-3-P}
\]

\[
\begin{align*}
\text{Fructose} & \quad \xrightarrow{1} \quad \text{ATP} \quad \text{ADP} \\
\text{F-6-P} & \quad \xrightarrow{14} \quad \text{ATP} \quad \text{ADP} \\
\text{F-1-P} & \quad \xrightarrow{15} \\
\text{Dihydroxyacetone-P (DHAP)} & \quad + \\
\text{GA-3-P} & \quad \xrightarrow{16} \quad \text{ATP} \quad \text{ADP}
\end{align*}
\]
B. Mannose

\[
\begin{align*}
\text{CHO} & \quad \text{HO} \\
\text{HO} & \quad \text{H} \\
\text{H} & \quad \text{OH} \\
\text{H} & \quad \text{OH} \\
\text{CH}_2\text{OH} & \quad \text{ATP} \quad \text{ADP}
\end{align*}
\]

Mannose

\[
\begin{align*}
\text{CHO} & \quad \text{HO} \\
\text{HO} & \quad \text{H} \\
\text{H} & \quad \text{OH} \\
\text{H} & \quad \text{OH} \\
\text{CH}_2\text{OPO}_3^{2-} & \quad 1
\end{align*}
\]

Mannose-6-P (M-6-P)

\[
\begin{align*}
\text{CHO} & \quad \text{HO} \\
\text{HO} & \quad \text{H} \\
\text{H} & \quad \text{OH} \\
\text{H} & \quad \text{OH} \\
\text{CH}_2\text{OPO}_3^{2-} & \quad 20
\end{align*}
\]

F-6-P
C. Glycerol

Glycerol

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{OH} \\
\text{CH}_2\text{OH} & \quad \text{ADP} \\
\text{ATP} & \quad \text{17}
\end{align*}
\]

Glycerol-3-P

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{OH} \\
\text{CH}_2\text{OPO}_3^{2-} & \quad \text{ADP} \\
\text{NAD}^+ & \quad \text{18}
\end{align*}
\]

DHAP

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{OH} \\
\text{CH}_2\text{OPO}_3^{2-} & \quad \text{NADH} + \text{H}^+
\end{align*}
\]
Enzymes for Converting Other Carbohydrates into Intermediates of Glycolysis

• **Hydrolases** (di-, oligo-, and polysaccharides)

• **Kinases** (phosphotransferases; “phosphorylation”)

• **Isomerase**s (ketol isomerase, epimerase, mutase)

• **Dehydrogenases** (NADH-dependent)
Metabolism of Galactose

Galactose (Gal) \rightarrow Gal-1-P \rightarrow Glc-1-P

UMP^\simP-Glc \rightarrow UMP^\simP-Gal

$\text{UMP}^\sim\text{P} = \text{UDP}$

Reactions:
1. Galactose \rightarrow Gal-1-P
2. Gal-1-P \rightarrow Glc-1-P
3. UMP^\simP-Glc \rightarrow UMP^\simP-Gal
4. UMP^\simP-Gal \rightarrow UMP^\simP-Glc
Metabolism of Galactose

\[
\begin{align*}
\alpha-D-Gal\text{-}1-P & \quad \text{ATP} \quad \text{ADP} \\
\alpha-D-Gal\text{-}1-P & \quad \text{UDP-Gal} \\
\alpha-D-Gal\text{-}1-P & \quad \text{UDP-Glc}
\end{align*}
\]
Metabolism of Galactose

\[\alpha-D-Glc-1-P \rightarrow 24 \text{ Phosphoglucomutase} \rightarrow \alpha-D-Glc-6-P \]
Source of UDP-Glucose

\[\text{UDPGlc} = \alpha\text{-D-Glc-1-P} + \text{UTP} \]

\[\text{Pyrophosphate (PPi)} + \text{UDP-Glc} \rightarrow 2 \times \text{Phosphate (Pi)} \]

\[\text{H}_2\text{O} \]

p. 37
Degradation of Polysaccharides
(Starch, Glycogen)
Intracellular Polysaccharides (Glycogen Reserve)

Blood

Digestive Tract

“Dietary” Polysaccharides (Starch, Glycogen)

“Hydrolysis” (unregulated)

Glucose

Liver, Skeletal Muscles

Intracellular Polysaccharides (Glycogen Reserve)

Synthesis (ATP-dep.)

“Phosphorolysis” (highly regulated)

Glucose

Glc-1-P (Glycolysis)

Blood

Glucose
Structure of Glycogen and Starch

![Diagram of glycogen and starch structures with annotations for (α1 → 4) linkages and (α1 → 6) branch points.](image-url)
Structure of Glycogen and Starch
Starch Grains in Sweet Potato Tuber Cells

mse.iastate.edu/images/microscopy/
Hydrolysis of Dietary Starch and Glycogen

- Beta-Amylase
- Beta-Amylase
- Beta-Amylase (exoglucosidase, plants)
- Alpha(1→6) Glucosidase (debranching enzyme)
- Alpha-Amylase (endoglucosidase)
- Maltase

Water (all glucosidases)

H2O

Glc

2 Glc

Maltose
Glc (α1→4) Glc

p. 39
Intracellular Polysaccharides (Glycogen Reserve)

Blood

Digestive Tract

“Dietary” Polysaccharides (Starch, Glycogen)

“Hydrolysis” (unregulated)

Glucose

Liver, Skeletal Muscles

Intracellular Polysaccharides (Glycogen Reserve)

Synthesis (ATP-dep.)

Glucose

“Phosphorolysis” (highly regulated)

Glc-1-P (Glycolysis)

Blood

Glucose

Synthesis (ATP-dep.)

Glucose

“Phosphorolysis” (highly regulated)

Glc-1-P (Glycolysis)

Blood

Glucose
Glycogen Granules in Muscle Fibers (white)

www.neuro.wustl.edu/neuromuscular/pathol/acdmchi.htm
Phosphorolysis of Intracellular Glycogen

Glycogen phosphorylase (or Starch phosphorylase) catalyzes the conversion of glycogen to Glc-1-P, which is then converted to limit dextrin. The key steps are:

- **Non-reducing ends**
- **α1,4 linkages**
- **Branch point** one α1,6 linkage
- **Reducing end**

The reaction proceeds as follows:

1. Glycogen phosphorylase (or Starch phosphorylase) removes 11 HPO$_4^{3-}$ (Pi) from the glycogen, forming 11 Glc-1-P.

2. The Glc-1-P is then converted to limit dextrin.

3. Limit dextrin is a linear polysaccharide with α-(1,6) linkages.

Limit dextrin is linked to protein.
Debranching enzyme
(the glucanotransferase activity)

Limit dextrin

\(\alpha-(1,6) \) linkage

Debranching enzyme
(the \(\alpha 1,6 \) glucosidase activity)

\(\text{H}_2\text{O} \)

Glucose

Glycogen phosphorylase

\(15 \text{ HPO}_4^{3-} \)

\(15 \text{ Glc-1-P} \)

..........linked to protein

..........linked to protein

..........linked to protein

..........linked to protein

p. 40
The “Powertrain” of Human Metabolism (Overview)

CARBOHYDRATES

PROTEINS

LIPIDS

Glucose → Glucose-6-P → Pyruvate → Acetyl-CoA → NADH → ATP

Glycogen → Glucose-6-P

Oxaloacetate → Lactate

Glycolysis

Other Carbohydrates

Amino acids

Fatty acids

Ketone bodies

Cholesterol

O2

CO2

H2O

NADPH → NADH
Overall Goal: $\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}$

CARBOHYDRATES

Glycolysis

Glucose

Other Carbohydrates

Glycogen → Glucose-6-P → Pyruvate → Acetyl-CoA → PDH → CO$_2$ → ATP

Lactate

O$_2$ → CO$_2$ → H$_2$O
Inner-Membrane Transporters Are Powered by the Proton-Gradient
A. Additional Coenzymes

- Flavin Adenine Dinucleotide (FAD)
- Lipoic Acid (Lipoamide)
- Coenzyme A (CoA-SH)
Riboflavin (Vitamin B₂)

FAD, FADH₂, FMN, FMNH₂

FADH₂ or FMNH₂
Lipoic Acid (Lipoamide)

Lysine residue of enzyme (isopeptide bond)
Coenzyme A (CoA-SH)
B. Reactions of the Pyruvate Dehydrogenase Complex

Overall Reaction

\[
\text{Pyruvate} + \text{NAD}^+ + \text{CoA-SH} \rightarrow \text{Acetyl-CoA} + \text{CO}_2 + \text{NADH} + \text{H}^+
\]

\[\Delta G^o' = -33.5 \text{ kJ mol}^{-1}\]

Five Co-factors:
- NAD\(^+\)
- Coenzyme A
- TPP
- Lipoic Acid
- FAD
C. Mechanism of Pyruvate Dehydrogenase (E1)

"Business end" of TPP is thioazolium ring

Carbanion

Intermediates common to both PDC and PDH enzymes

p. 44
Intermediates common to both PDC and PDH enzymes.

- **Acetyl-CoA**
 - **H₃C-C-ScoA**
 - **SH HS**
 - **(CH₂)₄-C O-N-E₂**
 - **FADH₂**
 - **NAD⁺**
 - **NADH + H⁺**

- **Coenzyme A** (CoA or CoASH)
 - **(CH₂)₄-C-N-Enzyme (E₂)**

- **Lipoamide**
 - **(CH₂)₄-C-O-N-Enzyme (E₂)**

- **Enzyme (E₂)**
Glucose \rightarrow 2 Pyruvate

Glycolysis

Cytosol

2H$_2$O \rightarrow 2ATP \rightarrow 2Pyruvate \rightarrow 2NAD$^+$ \rightarrow 2NADH + H$^+$

Mitochondria

2 Pyruvate \rightarrow 2Pyruvate \rightarrow 2NAD$^+$ \rightarrow 2CoA-SH \rightarrow 2CO$_2$ \rightarrow 2 Acetyl~CoA \rightarrow 2NADH + H$^+$

PDH Complex