Postdoctoral position in plant disease resistance at UC Davis

A postdoctoral position is immediately available to study the mechanism of action of the wheat stripe rust resistance gene *Yr36*. This gene, which confers temperature-dependent partial resistance to wheat stripe rust, was cloned in 2009 (Science 2009, 323:1357-1360, http://www.plantsciences.ucdavis.edu/dubcovsky/Papers_PDFs/Yr36_Paper_SCIENCE.pdf) and showed a novel gene architecture (Kinase + START domain). Yeast two-hybrid screens have been already performed and interesting candidate interactors have been identified. Stable transgenic wheat plants carrying *YR36::GFP* and tagged *UBI::NTAP::Yr36* constructs are available. The selected candidate is expected to refine the Yr36 protein subcellular localization and identify the lipid that binds the START domain and the phosphorylation targets of the Kinase domain.

The successful applicant must be able to demonstrate: extensive knowledge of biochemistry and, proven laboratory ability to carry out a wide range of biochemistry techniques, experience in cloning, plant protein isolation, western blots, and protein-protein interactions assays. The selected candidate is expected to implement new technologies and to have the ability to work under minimal supervision. Experience in kinase assays, lipid biochemistry, and/or programmed cell death are a plus. Previous experience in plant disease resistance is also an advantage. The position is initially for one year but support is available for additional years depending on candidate’s performance and productivity. Salary will be adjusted according to experience.

Please send a CV, a letter of application, and the names of three scientists that can provide references to jdubcovsky@ucdavis.edu

Additional information is available at http://www.plantsciences.ucdavis.edu/dubcovsky/.