Embracing Variability in the Application of Plant–Soil Interactions to the Restoration of Communities and Ecosystems

Valerie T. Eviner¹,² and Christine V. Hawkes³

Abstract

Plant–soil interactions are the foundation of effective and sustained restoration of terrestrial communities and ecosystems. Recent advances in ecological science have greatly contributed to our understanding of the effects of soil conditions on plant community dynamics and our understanding of plant composition impacts on almost every aspect of soil structure and function. Although these theories provide important guidelines for the practice of restoration, they often fall short of providing the level of information required to make effective site-specific management decisions. This is largely because of ecology's search for simple unifying theories and the resulting tendency to generalize from studies at one or only a few sites. An average effect or broad-scale simple relationship tends to provide a "one-size-fits-all" (or none) prescription for managers. Plant–soil interactions can vary greatly depending on their context (e.g., environmental conditions, management practices, time, neighboring community, interaction with other organisms). The ability to predict these context-dependent interactions between plants and soils can be developed by building upon existing general frameworks for understanding plant–soil interactions. Collaborations between researchers and managers can develop conceptual tools that allow us to understand and manage the variability and complexity of plant–soil interactions, simultaneously advancing theory and applicability.

Key words: context dependence, microbial communities, plant–soil interactions, plant traits, restoration, soil nutrients, species effects.

Introduction

Ecological restoration embraces a broad suite of goals, ranging from amelioration of highly degraded abiotic conditions (e.g., toxic pollutant levels and the absence of topsoil on old mine sites), to the reinstatement or enhancement of key ecosystem functions (e.g., production, erosion control, water flow and quality), to the reestablishment of a target biotic community (e.g., rare species, native species, high diversity, eradication of invasive species). In terrestrial ecosystems, plant–soil interactions are the foundation for effective and sustained achievement of any of these goals. Soil conditions constrain plant performance and community composition (Grime 2001; Pywell et al. 2003), and attempts to restore plant communities are likely to fail if they do not consider the limitations imposed by soil conditions. In contrast, plant composition can impact almost every aspect of soil structure and function (Wardle 2002; Eviner & Chapin 2003) so that restoration of soil conditions is often best achieved by using plants as tools to alter soils (Sarrantonio 1994; Ingels et al. 1998; Whisenant 1999; Eviner & Chapin 2001). Bidirectional feedbacks between plants and soils have the potential to be major tools for restoration (e.g., colonizing plants ameliorating poor soil conditions) or major obstacles to restoration (e.g., invasive species altering soil conditions to benefit themselves) (Suding et al. 2004; Ehrenfeld et al. 2005; Krueger-Mangold et al. 2006; Vinton & Goergen 2006; Levine et al. 2006).

Although ecological theory can provide useful guidelines for multiple restoration goals, it often falls short of providing the level of information required by managers to develop and implement a successful restoration project (Fig. 1; Table 1). In a review of 87 restoration projects, Lockwood and Pimm (1999) found that 19.5% were completely unsuccessful, an additional 48% of the projects only met some goals, and 13% met all goals but required continued management to sustain their (mostly modest) goals. Many restoration failures can be attributed to site-specific issues that were not taken into account (Wassenaar et al. 2007)—an inevitable outcome when broad prescriptions are derived from a handful of successful sites, and when variability and complexity inherent in

¹ Department of Plant Sciences, University of California, 1210 PES, Mail Stop 1, One Shields Avenae, Davis, CA 95616, U.S.A.
² Address correspondence to V. T. Eviner, email veviner@ucdavis.edu
³ Section of Integrative Biology, University of Texas, 1 University Station, Austin, TX 78712, U.S.A.

© 2008 Society for Ecological Restoration International
doi: 10.1111/j.1526-100X.2008.00482.x
many ecosystems are deemphasized in favor of simple ecological principles (Hildebrand et al. 2005). For example, management practices that successfully increased native plant diversity at some dune sites resulted in increased exotic plant diversity when applied to other dune sites (Mason & French 2007).

Currently, restoration failures are often dismissed as “problem sites” (Wassenaar et al. 2007), but it is critical to incorporate these failures into our conceptual understanding (Hackney 2000) by fitting the results of individual restoration projects into a mechanistic framework that accounts for site-specific conditions—allowing us to focus on why responses are variable rather than just pointing out that a site differs from the average response. In this paper we:

1. Review recent advances in our understanding of plant–soil interactions, focusing on plant traits to explain plant responses to and effects on soils, and how these can be used as tools for effective restoration.

2. Cite examples of context dependence, highlighting the need to move beyond broad-scale generalizations to an understanding of site-specific conditions.

3. Lay out mechanistic frameworks to develop a predictive understanding of how plant–soil interactions vary across sites, time, biotic communities, and management practices.

Incorporating context dependence into predictive, mechanistic frameworks may result in conceptual tools that improve the ability of managers to implement effective site-specific restoration efforts.

Ecological Frameworks as Management Tools: Moving From Broad-Scale Generalizations to Site-Specific Recommendations

Ecological science has made great strides in advancing our understanding of soil impacts on plants (mediated by plant response traits) and plant impacts on soils (mediated by plant effect traits). However, these advances have primarily been generalizations at the broad scale, which can be useful tools at some level, but have limited ability to guide decisions at the site level (Table 1).

Plant Response Traits

General Frameworks. Plant “response traits” determine the response of a plant to its environment (Keddy 1992; Lavorel & Garnier 2002) (Table 2). These traits allow...
Table 1. Ecological principles as tools for restoration practice, and conceptual tools needed to better predict context dependence.

<table>
<thead>
<tr>
<th>Restoration Goal</th>
<th>Tools Provided by Generalized Ecological Concepts</th>
<th>Strengths and Limitations of Generalized Framework</th>
<th>What We Need to Know to Develop a Framework of Context Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant composition</td>
<td>Response traits provide:</td>
<td>Works well across sites that differ greatly, does not provide insight into species responses or interactions within a given set of conditions at a site</td>
<td>- Specifies of resource use (who, what, where, when, how much)</td>
</tr>
<tr>
<td></td>
<td>- Selection of species suitable for a given site</td>
<td></td>
<td>- Do all these resource conditions need to be addressed, or are there key conditions that are most important?</td>
</tr>
<tr>
<td></td>
<td>- How to alter a site to be suitable for a given species</td>
<td></td>
<td>- What are the factors that determine which resource traits are most important and how their relative importance changes under different biotic and abiotic conditions?</td>
</tr>
<tr>
<td></td>
<td>- How environmental shifts or management will impact competitive interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Limitations/trade-offs of what is possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity theory provides:</td>
<td>An understanding of which sites/environmental conditions are conducive to fostering high plant diversity or thwarting invasions</td>
<td>Works well across broadly different sites, requires an understanding of context-dependent response traits (see above) to address specific sites and species combinations</td>
<td>- How do neighbors affect response traits, thereby altering plant interactions?</td>
</tr>
<tr>
<td>Plant–microbe interactions provide:</td>
<td>Identification of key microbial groups or specific microbes necessary for fostering the desired plant community</td>
<td>The basic understanding of plant-microbe interactions is still incomplete. Basic questions include: - How do plant and microbial traits predict plant effects on microbes and microbial effects on plants? - To what extent are plant and microbial responses to biotic and abiotic changes coupled?</td>
<td>Once this basic understanding increases, the same types of questions listed above, can be addressed for plant-microbe interactions.</td>
</tr>
<tr>
<td>Ecosystem function</td>
<td>Effect traits provide:</td>
<td>Works well for species from sites that differ greatly, does not provide insight into species effects within a given set of conditions at a site, or how a given species changes its effects across sites or time</td>
<td>- How do the relative importance of traits in determining ecosystem processes change with environment?</td>
</tr>
<tr>
<td></td>
<td>- Selection of species that are likely to provide a given service</td>
<td></td>
<td>- How do the effects of a given trait change with environment?</td>
</tr>
<tr>
<td></td>
<td>- Limitations/trade-offs of what is possible</td>
<td></td>
<td>- How do trait values change in response to the environment?</td>
</tr>
<tr>
<td>Diversity and ecosystem function theory provides:</td>
<td>General pattern of increased diversity enhancing productivity, decreasing nutrient leaching, and protecting against invasions</td>
<td>Provides a general fallback method for restoration when little is known about the specific attributes of species. Specific understanding of species’ site-specific effect and response traits provide a stronger tool. Does not account for nonadditive effects, which are strong determinants of the effects of species mixtures</td>
<td>- How do species traits change due to neighbors?</td>
</tr>
<tr>
<td></td>
<td>General pattern of providing ecosystem services over time and changing conditions due to functional redundancy</td>
<td></td>
<td>- How do interactions of different traits (from different species) affect ecosystem processes?</td>
</tr>
</tbody>
</table>
restoration practitioners to determine the habitat conditions needed to support a given species, select which species are best suited to site conditions, or predict which species will be competitively superior under a given set of conditions.

The probability of restoration success will increase by selecting species most suitable to the environmental conditions at the site. Grime’s Competitive-Stress tolerant-Ruderal (C-S-R) approach (Table 2) allows us to select species for restoration sites based on traits that make them more suitable to tolerate conditions of competition, stress, or disturbance (Grime 1986, 2001; reviewed in Whisenant 1999). Similarly, Chapin (1993) has shown that different suites of traits are associated with plants growing at low-fertility versus high-fertility sites (Table 2). Other studies have identified traits that determine species response to aboveground grazing or fire, with different disturbances leading to selection for different suites of traits (Grime 2001; Lloret & Vila 2003; Rusch et al. 2003; Diaz et al. 2007), which are critical for understanding how species respond to management practices employed in restoration projects.

These trait-based approaches also allow us to identify mismatches between current site conditions and those required by the species we would like to restore, providing an understanding of how to alter conditions to promote the target species. For example, Chapin’s fertility framework (Table 2) allows us to determine if sites need to be fertilized or have nutrients removed in order to promote a given species. Based on this framework, carbon (C) additions to soil are increasingly being used to sequester nitrogen (N) in the microbial biomass, thus decreasing the fertility of a site to promote species that require low nutrient conditions (Blumenthal et al. 2003; Krueger-Mangold et al. 2006).

The study of response traits also provides us with a realistic view of what is possible by demonstrating that there are some inevitable constraints and trade-offs in our selection of plant species at restoration sites. For example, we might desire fast-growing plants to establish at abandoned mine sites or at sites that have lost most of their topsoil, but the species that can tolerate toxic or low-fertility soils are generally slow-growing plants, and in most cases, stress tolerant plants will be the best (or only) choice for the current conditions. Response traits and their trade-offs are the basis for state and transition models used to understand ecosystem degradation and potential for restoration (Gondard et al. 2003; Suding et al. 2004).

Site-Specific Response Traits. Response traits provide a powerful tool for determining which species are suitable for sites that differ broadly in environmental conditions, or which broad conditions must be achieved in order to favor target species or communities. Although these are powerful frameworks at broad scales, they are less useful for managing community composition among plants that are all suited to a given set of conditions. An improved understanding of species interactions at a given site is often critical in restoration projects that focus on replacing
Exotic communities with native communities. In many instances, both sets of species are well suited to the same broad conditions (e.g., high fertility), so there is a need to determine which response traits explain species distributions at local scales. We will explore local response traits related to resource use in some detail because these are likely to provide useful and effective targets for management. A parallel approach can be used for other mechanisms underlying local restoration success, such as response to disturbances or management practices.

Species prevalence may be a function of key soil characteristics or functions in relation to response traits that determine resource use:

- **How much** resource is required
- **When** resources are used (e.g., are invasives exploiting a phenological niche that the natives do not?)
- **Where** resources are obtained spatially (e.g., differences in rooting distribution)
- **Which** resource forms are used (e.g., differences in preference for NH₄ vs. NO₃)
- **What** balance of multiple resources is required (e.g., stoichiometry)
- **What** associations are exploited to access resources or alter resource states (e.g., mycorrhal fungi, nitrifiers).

Understanding these differences across species allows us to target management actions to alter resource conditions in a way that promotes the desirable species. In some systems, much of this information is already available and could be used to modify current restoration approaches—here we discuss California grasslands as a detailed example.

Restoration efforts in California grasslands that endeavor to establish native perennial grasses and oust exotic annual grasses may be able to take advantage of differences in the timing, location, and form of resources used (Fig. 2). For example, nutrient uptake by native perennials occurs throughout the growing season and into the summer, as well as at deeper soil levels, compared to shallow-rooted annuals that access fall and early-spring nutrient pulses (Heady et al. 1991; Brown 1998). To shift competitive outcomes based on phenological differences in nutrient uptake, attempts to decrease soil nutrients should be made in the fall and early spring, when exotics take up most of their N (Fig. 2). An alternative approach is based on differences between California’s exotic annuals and native perennials in the form of N they take up. Exotics take up proportionally higher NO₃ than NH₄ (Davidson et al. 1990) and promote larger populations of ammonium-oxidizing bacteria (Hawkes et al. 2005). Thus, a potential strategy to promote native plants is to add nitrification inhibitors to reduce the amount of NO₃ in soil.

Because exotic annuals have a slight tendency to out-compete native perennials under higher nutrient conditions (reviewed in Corbin et al. 2007), reducing soil nutrient availability may also promote successful restoration. Manipulation of soil resources aimed at a reduction of site nutrient levels is usually attempted through C additions to soil in the form of sugars or sawdust. Even when local response traits are considered; however, the effectiveness of C additions greatly varies across projects. This method has had mixed results in California grassland restoration (reviewed in Corbin et al. 2007) as well as in restoration of a number of different systems (Blumenthal et al. 2003; Krueger-Mangold et al. 2006). The type and amount of C required to reduce N levels depends on both site conditions and plant species, with no clear, consistent relationship between C added and N sequestered (Blumenthal et al. 2003; Rowe et al. 2006). Despite a rich literature exploring the interactions between C and N in the soil (van de Geijn & van Veen 1993; Kuzyakov 2002; Hyvonen et al. 2007; Blagodatskaya et al. 2007), there is still relatively little ability to predict how these interactions change across sites, highlighting the need to carefully consider context dependence.

Table 2. Response traits are a guide to predict which species are most suited to broad-scale differences in site conditions.

<table>
<thead>
<tr>
<th>Site Conditions</th>
<th>Traits of Species Suited to Site Conditions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive: low stress, low disturbance (sites with potential for rapid growth)</td>
<td>Rapid growth, low reproductive allocation, little storage, long or short lived</td>
<td>Grime (1986, 2001)</td>
</tr>
<tr>
<td>Stressful: harsh abiotic conditions, resource limited, potentially exposed to toxins and extreme temperatures</td>
<td>Long lived, occasional flowering, slow growth, low reproductive allocation, storage of carbon and nutrients</td>
<td>Chapin (1993)</td>
</tr>
<tr>
<td>Disturbance: frequently disturbed sites, sites with unpredictable growing conditions</td>
<td>Very short lived, frequent flowering, rapid growth, high reproductive allocation, storage in seeds</td>
<td>Chapin (1993)</td>
</tr>
<tr>
<td>High-fertility site</td>
<td>High growth rate, high tissue N, high water use, high nutrient uptake, low C–based defenses, low root:shoot ratio, high leaf turnover rate</td>
<td>Chapin (1993)</td>
</tr>
<tr>
<td>Low-fertility site</td>
<td>Low growth rate, low tissue N, low water use, low nutrient uptake, high C–based defenses, high root:shoot ratio, low leaf turnover rate</td>
<td>Chapin (1993)</td>
</tr>
</tbody>
</table>
Clearly, an understanding of site-specific response traits (where, when, what, etc.) is a critical step toward improving our restoration strategies, but some key questions that need to be addressed include:

1) Does successful restoration require attainment of all these resource conditions (what, where, how much, who, etc.), or only a subset?

2) What are the factors that govern which resource conditions are the most important, and how their relative importance changes under shifting environmental conditions and across scales?

Both successful and failed restoration projects can be used to increase our understanding of how these resource traits shape community interactions and thus successful restoration strategies.

Similar to response traits to soil resources, response traits to management impacts (e.g., grazing, fire) can be important tools in restoration. In California grasslands, restoration efforts have exploited the phenological differences between natives and exotics by adjusting the timing of controlled burns or herbicide applications targeting exotics, with varying success (reviewed in DiTomaso et al. 2007; Stromberg et al. 2007). These traits that mediate response of plants to management can also show strong general patterns and important changes across sites (Pakeman 2004; Fynn et al. 2005; Diaz et al. 2007). Diaz et al. (2007) found that a number of conceptual frameworks differ in their predictions of plant community response to aboveground grazing because they were based on local or regional studies that varied in which traits determine plant response to grazing. By analyzing a global database of plant-grazing interactions, they found that across a global scale, key traits that are favored by grazing are as follows: annual growth habit, short stature, prostrate growth, and stoloniferous or rosette architecture (as opposed to tussock). However, the strength of these traits in predicting responses to grazing can change depending on precipitation and grazing history. For example, in most grassland sites across the globe, grazing can be used to favor annual over perennial plants, but this will not be an effective management tool in dry regions with a long evolutionary history of grazing (Diaz et al. 2007). Their approach sets the stage for a trait-based framework that can bridge both global generalizations and site-specific conditions.

Plant Effect Traits

General Framework. Plants not only respond to soil conditions but also shape them. Plant “effect traits” (Viole et al. 2007) can predict the effect that different plant species have on a wide variety of soil conditions and processes (Table 3; Wardle 2002; Eviner & Chapin 2003). Manipulation of vegetation composition is a traditional tool for providing key ecosystem services to agriculture and restoration (Sarrantonio 1994; Ingels et al. 1998; Eviner & Chapin 2001) and is the most effective long-term method for soil restoration (Whisenant 1999). When comparing species across a broad range of environmental
conditions, species are often found to have suites of related traits that maintain the current flux of nutrients (Chapin 1993; Lavorel & Garnier 2002). For example, the species that can tolerate low-fertility sites also tend to have traits that foster slow rates of nutrient recycling (e.g., lower litter quantity and quality) (Chapin et al. 1993). Thus, just as the conventional approaches to response traits are powerful at broad scales, the use of functional groups or single traits such as litter chemistry can predict plant species effects on soil processes such as N cycling at regional scales across steep gradients of abiotic conditions (Taylor et al. 1989; Scott & Binkley 1997) because at such a coarse scale, environmental conditions select for certain suites of plant traits (Chapin 1993; Diaz & Cabido 1997; Diaz et al. 1999; reviewed in Eviner & Chapin 2003).

As with response traits, there are trade-offs among the effect traits that a species may have—limiting the options of multiple soil conditions that can be restored with a given plant species. For example, species with quickly decomposing litter may enhance nutrient cycling, but their decreased litter layer will provide poor insulation for soil during cold periods (Eviner 2004). The restoration of multiple soil conditions can be achieved, however, by planting a mixture of species with different effect traits (but see plant-mixture section below). The effects of plants on ecosystems can also be used as a tool for restoring target plant communities, by using particular species to shift soil conditions to a state more suitable for the desired species (Krueger-Mangold et al. 2006). For example, Herron et al. (2001) increased the presence of the native Blue bunch wheatgrass (Pseudoroegneria spicatum) 10-fold over the exotic Spotted knapweed (Centaurea maculosa) by seeding in Annual rye (Secale cereal) to draw down soil N.

Context Dependence of Plant Effects on Ecosystems—Abiotic Conditions. Although single traits or functional groups can be powerful predictors of plant effects on N and C cycling at large-scales, traits that strongly covary over steep environmental gradients may vary independently across species at local scales so that variation of traits within a site can be substantial (Lavorel & Garnier 2002; Ackerly & Cornwell 2007). Relationships between litter quality and N cycling are often weak within a given site (Steltzer & Bowman 1998; Eviner et al. 2006) because the other mechanisms that determine plant effects on N can vary independently from litter chemistry (Eviner 2004). The use of multiple traits is better than one-dimensional functional groups for predicting site-level differences in functions among species (Shock et al. 1984; Wedin & Tilman 1990; Cheng & Coleman 1991; Steltzer & Bowman 1998; Bottner et al. 1999; Eviner & Chapin 2003; Mack & D’Antonio 2003; Eviner et al. 2006) and can be the basis of a local-scale functional effect framework (Eviner & Chapin 2003).

A functional effect framework could be critical not only in discerning differences across species locally but also to account for shifts in the effects of a given species across changing conditions. For example, legumes are frequently planted to increase soil N availability in agriculture and restoration (Eviner & Chapin 2001), but when *Lupinus bicolor* was planted into plots with similar environmental conditions, some plots showed high enhancement of soil N cycling rates, whereas other plots showed little

Table 3. Multiple traits that influence plant species effects on soil properties and processes (reviewed from Eviner & Chapin 2003).

<table>
<thead>
<tr>
<th>Soil Property</th>
<th>Plant Traits That Influence This Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil temperature</td>
<td>Aboveground biomass, shoot morphology, aboveground litter persistence (litter chemistry and structure) and color</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>Biomass, shoot morphology, litter persistence (litter chemistry and structure), water uptake, rooting area, leaf area, phenology, species effects on soil structure and water-holding capacity</td>
</tr>
<tr>
<td>Soil pH</td>
<td>Cation pumping, form of N uptake, organic acids in exudates/litter</td>
</tr>
<tr>
<td>Soil C/N, soil organic matter</td>
<td>Litter and tissue chemistry, biomass, allocation (particularly to roots), exudate quantity and quality, species effects on microclimate and microbes</td>
</tr>
<tr>
<td>Available inorganic N</td>
<td>Litter and exudate quantity and quality; root turnover; plant uptake; phenology; species effects on organic matter, pH, and microclimate</td>
</tr>
<tr>
<td>Available inorganic P</td>
<td>Litter and exudate quantity and quality; root turnover; plant uptake; phosphatases; phenology; species effects on organic matter, pH, and microclimate</td>
</tr>
<tr>
<td>Net N cycling</td>
<td>Litter and exudate quantity and quality; root turnover; plant uptake; phenology; species effects on organic matter, pH, microclimate, and total active microbial biomass</td>
</tr>
<tr>
<td>Microbial biomass C, N, P</td>
<td>Litter and exudate quantity and quality; plant nutrient uptake; species effects on organic matter, pH, microclimate, and microbial community composition</td>
</tr>
<tr>
<td>Water infiltration</td>
<td>Root characteristics and turnover, hydrophobic substances, species effects on organic matter and soil aggregation</td>
</tr>
<tr>
<td>Water-holding capacity</td>
<td>Species effects on organic matter, soil aggregation, and pore size</td>
</tr>
<tr>
<td>Soil aggregation</td>
<td>Litter and exudate quantity and quality, rooting characteristics, species effects on microbes</td>
</tr>
<tr>
<td>Soil cohesion</td>
<td>Root morphology (particularly surface area, rooting area), C inputs, species effects on organic matter and microbes</td>
</tr>
</tbody>
</table>
to modest increases in N mineralization—no plot provided the average value for this species (Fig.1). It is far more useful for a manager to know the conditions under which this legume will provide N than it is to know the average effect of the species. Similarly, the restoration of native California grasses is often justified based on the ecosystem services they provide—such as decreasing N leaching. However, different studies in California have shown opposite patterns of whether exotic versus native grasses are more effective at minimizing N leaching (reviewed in Eviner & Firestone 2007). Similarly, the effects of native grass restoration on soil properties in the Midwestern United States change with soil type (Kucharik 2007).

Many studies have demonstrated that the ecosystem effects of a given species are not constant (reviewed in Ehrenfeld 2003). Both the values and relative ranking of species effects on N and C cycling can change across sites (Lovett & Rueth 1999; Kalburtji & Mamolos 2000; Scheffer et al. 2001; Verchot et al. 2001; Bridgham & Richardson 2003). These variations in the soil effects of a given species can be as great as the variation across different species coexisting at a site (Bridgham & Richardson 2003; Eviner et al. 2006). Shifts in the absolute and relative effects of plant species on soil due to environmental changes have been documented for a wide variety of soil characteristics and processes, including microbial biomass (Johnson et al. 1998; Priha et al. 1999; Zak et al. 2000), microbial resistance and resilience (Orwin & Wardle 2005), fungal colonization of roots (Rillig et al. 1998), methane consumption (Menyailo & Hungate 2003), formation of humus (Berg 2000), and fluxes of many soil nutrients (McKenzie et al. 1995; Raulund-Rasmussen & Vejre 1995). It will be invaluable for restoration managers to predict which species will provide specific services at a given site, or how the services provided by a given species will change as conditions vary within a site or across the landscape.

Functional context-dependent predictions can be made by incorporating existing approaches that predict species effects based on multiple plant traits (Eviner & Chapin 2003), with an understanding of how environmental conditions determine:

1. The relative importance of which traits impact ecosystem processes.
2. Individual trait values.
3. The ecosystem effect of a given trait.

These three mechanisms are discussed below, and an understanding of the relative importance of these mechanisms will enable us to identify the key factors that will predict the context dependence of species effects.

1. The relative importance of these traits may change across abiotic gradients: Seasonal and site-dependent effects of species can be due to fundamental shifts in which traits control soil processes (Bradley & Fyles 1996; Hobbie 1996; Eviner 2001; Evans et al. 2001; Scheffer et al. 2001; Scott et al. 2001; Mack & D’Antonio 2003; reviewed in Ehrenfeld 2003). For example, the importance of litter C/N in determining plant species effects on N cycling decreases as soil moisture becomes limiting (Vinton & Burke 1997; Steltzer & Bowman 1998; Burke 1989). Similarly, in unfertilized watersheds, net N mineralization is strongly influenced by soil moisture and soil temperature, but fertilized sites are less sensitive to changes in microclimate (Gilliam et al. 2001).

2. Individual traits change in response to environmental conditions: Environmental conditions can have large effects on many plant traits that are key regulators of soil characteristics (Table 4). The magnitude of trait variation within a species under different environmental conditions can be as great as the variation in plant traits known to

Table 4. Environmental conditions that impact the values of plant traits.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Conditions That Alter Trait</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plant age</td>
<td>Fenner et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>Season</td>
<td>Riipi et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Herbivory</td>
<td>Smith (1970)</td>
</tr>
<tr>
<td></td>
<td>Plant age</td>
<td>Martin (1977), Janzen and Bruinsma (1993)</td>
</tr>
<tr>
<td></td>
<td>Microenvironment</td>
<td>Marschner (1995)</td>
</tr>
<tr>
<td>Phenology</td>
<td>Soil fertility</td>
<td>Abdul-Jabbar et al. (1982)</td>
</tr>
<tr>
<td>Rooting patterns</td>
<td>Soil moisture</td>
<td>Hobbie (1996)</td>
</tr>
<tr>
<td>Tissue allocation</td>
<td>Temperature</td>
<td>Gleeson and Tilman (1994)</td>
</tr>
<tr>
<td></td>
<td>Plant age</td>
<td>Kalapos et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>Soil moisture</td>
<td>OIsthloorn et al. (1991)</td>
</tr>
</tbody>
</table>
determine differences in the ecosystem effects of different plant species (Olff 1992; van der Krift et al. 2001; Hobbie & Gough 2002; Westoby et al. 2002).

3. The effects of traits change depending on environmental conditions: The ecosystem effects of a species can vary by site because the relationship between traits and ecosystem functions may change under different environmental conditions (Meentemeyer 1978; Donnelly et al. 1990; Vesterdal 1999; Hobbie 2000; McTiernan et al. 2003). For example, at nutrient-poor sites, species with high initial litter N have a greater amount of litter that becomes stable humus, but this relationship is not seen at nutrient-rich sites (Berg et al. 2003). Similarly, labile C can stimulate decomposition of recalcitrant litter and soil organic C under low-nutrient conditions because microbes use labile C as an energy source to metabolize recalcitrant C in search of N. With high N availability, labile C decreases decomposition because microbes utilize the labile C and N and do not need to break down recalcitrant substances (Sparring et al. 1982; Reid & Goss 1983; Billes et al. 1988; Liljeroth et al. 1994; Cheng 1996; van Ginkel et al. 1996). This interaction of labile C, litter chemistry, and nutrient availability likely is responsible for the fact that increasing soil N availability can stimulate (Hunt et al. 1988; Berg & Tamm 1994; Hobbie 2000) or inhibit decomposition (McClaugherty & Berg 1987; Prescott 1995; Magill & Aber 1998), with some of this variation depending on species or site (Aerts & De Caluwe 1997; Hobbie 2000).

Context Dependence of Plant Effects on Ecosystems—Time. When plants are used in restoration to promote certain soil processes and characteristics, we must consider that plant–soil interactions can vary over time, ranging from seasonal cycles to long-term trends. The mechanisms that account for time-dependent effects include short- to long-term changes in plant traits and their relative importance in mediating an ecosystem process, accumulation of trait effects, and persistence of trait effects, even after the species has been removed.

1. Plant effect traits and their relative importance change with time: Both the values and relative importance of plant species effects on N and C cycling can change seasonally (Harris & Safford 1996; Mack & D’Antonio 2003; Eviner et al. 2006). Seasonal changes in species effects are largely phenological but are also partially due to changes in the controls of N cycling over the growing season, similar to shifts in abiotic conditions described above (Bradley & Fyles 1996; Eviner 2001; Mack & D’Antonio 2003). Long-term changes in species effects may be observed (reviewed in Strayer et al. 2006) because some traits shift with plant age and other trait effects accumulate to detectable levels (e.g., gradual build up of soil organic matter). For example, restoration of native tallgrass prairie species into former agricultural land has marked effects on soil C and N cycling, but these effects change over time, with storage of soil C increasing over the first 5–10 years and then varying in its trajectory as the restored stands age (Baer et al. 2002; Camill et al. 2004; Kucharik 2007).

2. Plant trait effects on soils are persistent through time: Species effects on soil processes and properties can persist for years after the species have been removed. Agricultural rotations are the best evidence that such effects can persist after one plant species has been replaced with another. Specific plants are grown in order to rebuild soil fertility or suppress soil pathogens, with the goal of affecting subsequent crop performance (Magdoff & van Es 2000; Larkin 2003; Newton et al. 2004). Similarly, the effects of invasive plants on microbial communities, soil characteristics, and nutrient cycles are likely to persist even after removal of the exotics. These legacy effects can influence growth and successional pathways of the new plant community (Larkin 2003). In California grasslands, plant legacies of total soil N and net N mineralization persisted for 3 years, whereas legacy effects of nitrification persisted for over 5 years but only were detectable during wet growing seasons (V. T. Eviner 2006, University of California, Davis, personal observation).

Plant Mixtures—Integration of Response and Effect Traits

Using Plant Mixtures to Provide Multiple Effect and Response Traits in Time and Space—General Framework. Species mixtures have long been used to provide multiple functions. For example, in agricultural systems, crops can provide productivity, whereas other key services are provided by cover crops (e.g., legumes for soil fertility, mustards to control harmful nematodes) (Eviner & Chapin 2001). By considering both response traits and effect traits, mixtures of species can be selected so that, collectively:

(1) Multiple services are provided by selecting species with different effect traits.
(2) These services are provided consistently over time and across changing conditions because within each functional group, multiple species are included that differ in their response traits.

Restoration strategy can capitalize on the substantial advances made in the field of biodiversity and ecosystem function. In general, when diversity is manipulated at the plot level, increased species richness is associated with increased production and increased resistance to invasions. Multiple species often consume resources more efficiently than any single species due to species differences in response traits, and based on these traits, the identity of species in the mixtures have a stronger impact than simply species richness (reviewed in Bengtsson et al. 2002; Levine et al. 2002). Thus, when the response traits of species are known, resource capture can be maximized by mixtures where species are carefully selected based on nonoverlapping traits (Brown 1998). In instances where the roles that individual species play in productivity and invasion resistance are not known (which is many cases of management), plot-scale diversity–function studies suggest that
planting diverse species is the best strategy. The relationship between species richness and production or invasion resistance is different when looking at unmanipulated distributions of these factors across landscapes. In this case, sites that are diverse tend to be lower productivity sites and also tend to have a higher richness of invaders present (reviewed in Bengtsson et al. 2002; Levine et al. 2002). This landscape-level correlation can be a useful tool in site selection for restoration projects, or in understanding the constraints to what goals are possible at a given site.

Nonadditive Interactions in Plant Mixtures—Neighbor-Specific Changes in Plant Effects and Responses. Although much attention has been given to the effects of plant diversity on ecosystem functions and stability (Naeem et al. 1999; Loreau et al. 2001), these studies largely tend to overlook that the effects and responses of a given species in mixture can greatly differ from the species in monoculture. The ecosystem effects of species mixtures can sometimes be predicted based upon the component species in monoculture (Thomas 1968; Staaf 1980; Blair et al 1990; Klemmedson 1992) but also can be lower (Saetre 1998; Finzi & Canham 1998) or higher (Taylor et al. 1989; Morgan et al. 1992; Anderson & Hetherington 1999; Robinson et al. 1999) than would be predicted based on monoculture results. Nonadditive effects are very common (Briones & Ineson 1996; Wardle et al. 1997) and can depend on the species in mixture (Fyles & Fyles 1993; Briones & Ineson 1996; McTiernan et al. 1997; Nilsson et al. 1999) or change over time for a given species mixture (Fyles & Fyles 1993; McTiernan et al. 1997; Wardle et al. 1997). Although nonadditive effects are prevalent, there is little insight into when to expect additive effects versus positive or negative nonadditive effects. This is a critical point when trying to restore plant–soil interactions or specific soil attributes.

Again, a mechanistic trait-based understanding of these nonadditive effects will be essential to both enhancing and applying our ecological understanding. Nonadditive effects of mixtures can be due to the following:

1. Changes in a species trait due to neighbors: Many traits are known to change when a given species is grown in mixtures versus monoculture, including nutrient concentrations (Welker et al. 1991; Thornton & Millard 1996), root:shoot allocation (Theodose & Bowman 1997; Ba et al. 2006), plant architecture (McConnaughay & Bazzaz 1992; Ikeda et al. 1994; D’Antonio et al. 1998; Rodríguez & Brown 1998), water use efficiency (Szente et al. 1993; Burton & Bazzaz 1995), and timing of nutrient uptake (van den Boogard et al. 1996). Differences in litter C:N ratios and labile C in species grown in mixtures versus monocultures account for the nonadditive effects of mixtures on N cycling (Eviner 2001). Such neighbor-induced changes in species traits can also impact competitive interactions and species’ responses to management practices and shifts in environmental conditions.

2. Unique combinations of traits in mixtures not present in individual species: Trait combinations can result in unexpected effects of species mixtures. For example, labile C inputs (e.g., through root exudation) can prime microbial breakdown of more recalcitrant substrates (Seastedt 1984). Similarly, nutrient additions can prime microbial utilization of other substrates (Ehaliotis et al. 1998; Vestgarden 2001). In contrast, plant secondary compounds can inhibit microbial activity, decreasing microbial utilization of more labile substrates, leading to overall decreases in C and N cycling (Swift et al. 1979; Handayanto et al. 1997).

Restoration managers need to consider not only the identity of plants but also their density. Neighbor density can greatly impact plant traits and plant–soil feedbacks. Grasses in high-density stands can have increased forage quality due to higher allocation to leaves than to stems (Pyke & Archer 1991). Density can also greatly impact plant allocation, biomass production, nutrient content and concentration, and litter chemistry (V. T. Eviner 2008, University of California, Davis, & M. Uriarte, Columbia University, personal communication).

A mechanistic understanding of nonadditive interactions in species mixtures is critical for managing both the effects and the responses of diverse restoration plantings. These neighbor-induced changes in both resource and effect traits are likely to interact with other site-dependent factors reviewed above.

Soil-Plant Interactions as Impacted by Soil Microbial Communities

At the heart of plant–soil interactions lies the microbial community. Microbial communities:

- are ultimately responsible for most biogeochemical transformations in soil,
- can play a significant role in impacting soil structure, and
- can have strong effects on plant growth and competitive dynamics.

Restoration success can require the presence of key microbial groups, particularly those microbes that are obligate or facultative symbionts with plant roots. Plant seedlings grow substantially better when planted into a community with established mycorrhizal connections than in disturbed sites or in isolation (reviewed in Whisenant 1999). In some cases, such as with pine trees, establishment requires simultaneous introduction of plants and ectomycorrhizal fungi if these root symbionts are not already present. Addition of symbiont inoculum can also facilitate restoration efforts when microbial communities have been disturbed or altered. Mycorrhizal inoculations, for example, have been shown to increase plant establishment and growth (Cuenca & Lovera 1992); increase soil organic matter, nitrogen, and aggregation (Requena et al. 2001), and alter succession by shifting competitive interactions between plants (Allen & Allen 1990). In addition, inhibiting microbial symbiont establishment can be used
as a tool to reduce establishment and growth of unwanted species. For example, in the absence of arbuscular mycorrhizal fungi (AMF) and actinorhizal Frankia, native oleaster shrub growth decreased by 4-fold (Visser et al. 1991), whereas growth of an invasive leguminous shrub decreased by 5-fold in the absence of specific Bradyrhizobium strains (Parker et al. 2006).

The role of microbes in restoration is not just restricted to the presence or absence of broad functional groups—microbial community composition can greatly impact soil conditions and plant establishment. The diversity of AMF can have large impacts on plant community composition and diversity (van der Heijden et al. 1998). The composition of AMF communities can also be an important determinant of plant dynamics. Restoration of late-successional plant seedlings was more successful with early-successional mycorrhizae than late-successional mycorrhizae likely because seedlings are more carbon limited than adult plants and form mycorrhizal associations that reflect a tolerable carbon cost (Allen et al. 2003). Caravaca et al. (2003) found additional specificity of AMF during restoration, with greater restoration success using native AMF compared to allochthonous species. This can be of concern in the reestablishment of native plants in habitats with non-native plants because exotic plant species can shift AMF communities by as much as 80% (Hawkes et al. 2006), and such invader-induced shifts in microbial composition can benefit the invasive plant over the natives (Callaway et al. 2004).

Plant species can foster distinct free-living and root-associated microbial communities in soils (Jaworski 1971; Olff et al. 2000; Marschner et al. 2001; Vandenkruyse et al. 2003) that can have positive (Requena et al. 1997; Bever et al. 2001) or negative (Kollmorgen et al. 1985; Bever 2002; Packer & Clay 2004) feedbacks to host plant performance. These effects are especially evident in agricultural systems where specific crop plants are actively used to stimulate microbial disease suppression (see reviews in Weller et al. 2002; Garbeva et al. 2004; Mazzola 2004). The effective use of cropping strategies to increase populations of soil microbes, such as fluorescent pseudomonads, that are antagonistic to plant pathogens implies that similar approaches could be used to restore microbial communities outside of agricultural systems. However, success in simplified agricultural monocultures may not easily transfer to more complex natural communities.

Microbial communities and their interactions with plants exhibit context dependence much like what we see in plant communities. For example, plant effects on soil microbial communities depend on the site and soil type, and these changes in plant–microbe interactions across sites have very different feedbacks to plant performance (Bezem et al. 2006). Similarly, the identity, phenology, and density of neighbors in a mixed plant community can impact the composition and structure of soil microbial communities (Lawley et al. 1982, 1983; Hartnett et al. 1993; Jastrow & Miller 1993; Westover 1997; Whisenant 1999; Hawkes et al. 2005, 2006; N. Hausmann 2008, University of California, Davis, and C. V. Hawkes, University of Texas Austin, personal communication), which again has the potential to alter soil properties and processes and plant performance. Microbial community composition, biomass, and function can also vary with soil type, environmental conditions, and land management independently of plant species composition and dynamics (Garbeva et al. 2004; Hawkes et al. 2007; Williamson & Wardle 2007). The context dependence of microbial communities suggests that restoration efforts are unlikely to foster desired microbial communities simply by providing the plants.

Because microbial communities can directly and indirectly affect plant success and ecosystem processes such as soil organic matter formation, decomposition, CO2 production, and N cycling (Schimel et al. 1995; De Boer et al. 1996; Treseder & Allen 2000; Balser & Firestone 2004; Hawkes et al. 2005), successful restoration may need to actively target both plant and microbial communities, and their interactions. As with the other examples discussed above, a focus on the traits of both plants and microbes will allow us to better understand the effects of plants on microbes, the effects of microbes on plants, how plant–microbe interactions impact soil properties and processes, and how all these interactions change with changing conditions (e.g., Orwin & Wardle 2005; Orwin et al. 2006). There is far less known about the details of what controls interactions between plant communities and microbial communities so that a context-dependent framework is not presented here as it had been for the other sections. However, data from restoration projects can greatly enhance our understanding of these interactions.

Conclusions
Restoration practitioners are faced with considerable challenges. To effectively restore an ecosystem or ecological community, it is often critical to consider multiple species, multiple functions, and their interactions. Furthermore, the restoration of self-maintaining systems is increasingly requiring the consideration of human-induced local- to global-scale environmental changes. The study of plant–soil interactions provide an important foundation for restoration, but the application of these principles often fails the “acid test” proposed by Bradshaw (1987). This is largely because broad-scale generalizations and “average effects” fail to provide managers with the information they need to address site-specific conditions. In order to help managers with the challenge of designing successful restoration techniques at a specific site, we need to embrace the variability of ecological studies and develop frameworks to understand this variability (rather than having physics envy). “It depends” may very well be the one unifying simple principle of ecological science, making studies of context dependence a critical frontier in both the theory and the application of ecological science. Current conceptual frameworks of plant–soil interactions
provide a strong foundation to build upon, and in this paper, we present a number of mechanistic frameworks that can advance our understanding of plant–soil interactions. Collaborations between researchers and restoration practitioners will provide the most rapid development of an understanding of context dependence, by coupling such theoretical frameworks with the critical data of the conditions underlying successes and failures in individual restoration projects.

Implications for Practice
- Ecological theory on plant–soil interactions provides a critical foundation for restoration strategies.
- Predictions of plant responses to soil conditions are critical in choosing sites, determining which species can thrive at a given site and predicting which species will outcompete others at a site.
- Selection of plant species can be an important tool to impact almost every aspect of soil conditions.
- Most current theories on plant–soil interactions focus on broad-scale generalizations or “average effects,” but interactions between plants and soil can change with environmental conditions, management practices, time, and the identity and density of neighboring species. This context dependence limits the ability to apply current ecological theory to site-specific conditions.
- A predictive understanding of how plant–soil interactions vary can be developed by building on existing theory but requires collaborations between managers and researchers to link the theoretical frameworks with the on-the-ground data of the conditions underlying success or failure in individual restoration projects.

Acknowledgments
We thank Mac Callaham and two anonymous reviewers for comments that greatly improved the manuscript, and Mac Callaham, Liam Heneghan, and Chuck Rhoades for organizing the symposium, conference, and special issue that led to the writing of the manuscript.

LITERATURE CITED

Garbeva, P., J. A. van Veen, and J. D. van Elsas. 2004. Microbial diversity in soil: selection of microbial populations by plant and soil type and

