Sample abstract intended to be presented at an oral session

The L-system-based plant-modeling environment L-studio 4.0

Radoslaw Karwowski and Przemyslaw Prusinkiewicz
Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4
pwp@cpsc.ucalgary.ca

Keywords: L-system, simulation software, interactive modeling

Introduction

L-studio and the Virtual Laboratory (Vlab) are two related plant modeling packages developed at the University of Calgary, Canada. They have been distributed by this University since 1999. The packages run on Windows and Linux machines, respectively, have similar functionality, and support the exchange of models between both systems. The main difference between these systems is the user interface, which is designed to meet the different expectations of Windows or Linux users. Below we outline the most recent version of L-studio (4.0) (Fig. 1). The package consists of: (a) two L-system-based simulation programs, cpfg and lpfg; (b) a modeling environment that provides auxiliary modeling tools; (c) a library of programs for simulating environmental processes that affect plant development; (d) a set of sample models; and (e) a graphical browser for organizing and accessing models on both local and remote machines.

Simulation programs: cpfg and lpfg

The simulation programs cpfg and lpfg are at the heart of L-studio. Their design has been guided by two key objectives: (a) flexibility, making it possible to model and simulate a wide range of structures and developmental processes in plants, and (b) visual realism of models. To meet the flexibility criterion, the models are specified by users in L-system-based languages. The modeling language used in cpfg, developed first, is based on the mathematical notation of L-systems, and makes it possible to specify simple models very concisely. The modeling language used in lpfg, called L+C, incorporates the L-system notion of productions into the full implementation of the C++ programming language (Karwowski 2002). L+C supports several constructs absent in the cpfg language, such as the possibility of assigning structured parameters to modules, support for user-definable functions, support for productions with several alternative successors, and a mechanism for fast transfer of unidirectional information. This last feature makes it possible to solve systems of differential equations defined on the simulated structure (Federl and Prusinkiewicz, 2004).

Based on their input (a number of files including the L-system model and optional data files), cpfg and lpfg create a three-dimensional internal representation of a model and project it on the screen. Model visualization is based on the OpenGL graphics library and supports standard modeling and rendering techniques developed in computer graphics, such as parametric surfaces, generalized cylinders, and texture mapping. The output may be a static model (which can be interactively rotated and zoomed in/out by the user) or computer-generated animation that results from visualizing consecutive stages of the simulation. The visualizations may have the form of schematic or realistic representations of branching structures, as well as plots and histograms. The multi-view presentation mode, available in lpfg, makes it possible to simultaneously visualize different aspects of the simulation in separate windows on the screen.
L-studio editors

In addition to the L-system-based description of the essential aspects of models, cpfg and lpfg require information to control the viewing and animation processes, and to characterize visual attributes of the models, such as the shapes and colors of plant organs. L-studio provides a user interface for specifying this complementary information and transferring it to the simulation programs. Different editors can be selected one at a time using tabs associated with the L-studio window. The available editors include: a text editor for creating and manipulating L-system and other textual files that constitute the model; a control panel manager, which makes it possible to create user-configurable controls, such as sliders and buttons, for manipulating model parameters; surface and cross-section editors for defining the shape of individual plant organs; color and material editors for specifying plant appearance when rendering; and a graphical editor of functions of a single variable. Some editors are complemented with galleries that make it possible to select a specific object or feature to be edited within a given class (for example, the shape of a petal within the class of organ shapes).

Environmental Programs

An important application area of architectural plant modeling is the study of interactions between plants and their environment. L-studio makes it possible to simulate such interaction using concurrently running, communicating programs that represent the plant and its environment (Mêch and Prusinkiewicz, 1996). The available environmental programs include: programs that model collisions between plant organs and their environment, programs for simulating the diffusive transport of water in the soil, and several programs for calculating the distribution of light in a plant canopy. A library of communication functions and the C source code of sample programs also make it possible for the user to create new, more specialized environmental programs. Their specification in a general-purpose language such as C or C++ is admittedly less convenient than the definition of plant models in an L-system-based modeling language, but no
special-purpose high-level language for defining the multitude of possible environmental processes currently exists.

The Browser

During the modeling process, one usually deals with several models at once. Typically they are a mixture of models developed previously, subsequent refinements or alternative versions of the model currently being developed, and sample programs serving as examples of L-system code. L-studio 4.0 includes a specialized graphical browser for organizing and accessing such models, which is based on an earlier Vlab implementation (Federl and Prusinkiewicz, 1999). A database of models is visualized as a hierarchical structure, relating older models to their refinements. Each model is associated with an icon, which facilitates its recognition. The browser makes it possible to access models on both local and remote machines. The remote access feature is particularly useful when a model is developed as part of a collaborative research project involving different sites.

Sample Models

L-studio is distributed with a set of sample and educational models, which illustrate various features of cpfg and lpfg, their application areas, and modeling styles. The cpfg models are grouped into the following classes: (a) models illustrating basic L-system constructs; (b) developmental models controlled by lineage; (c) developmental models controlled by endogenous signals and the allocation of resources; (d) models simulating the interaction of plants with the environment; (e) individual-based models of plant ecosystems; (f) descriptive models of plant structures; (g) models illustrating advanced modeling and visualization techniques; and (h) models of mathematical concepts and physical objects other than plants (e.g., fractals, sea shells, molecules, and reaction-diffusion patterns). The lpfg versions of many of these models are also available.

Acknowledgments

This research has been supported by the user community of L-studio and by grants from the Natural Sciences and Engineering Research Council of Canada and the Human Frontier Science Project.

References

